MATH SOLVE

2 months ago

Q:
# Solve for x squared - 12x+59=0

Accepted Solution

A:

We solve the equation [tex]x^2 - 12x + 59 = 0[/tex]

First we use [tex]x^2 - 12x + \displaystyle\sum_{n=1}^{\sum_{i=5}^6i}\left(\frac{59}{11}\right)[/tex] in order to compute our answer and then we use Justin Bieber's I close my eyes and I can see a better day Theorem that says that

[tex]The\ solutions\ to\ x^2 - 12x + \displaystyle\sum_{n=1}^{\sum_{i=5}^6(i)}= 0 \\ \\ \\ \ are\ x=6+\sqrt{23}i,\:x=6-\sqrt{23}i[/tex]

Here is a proof of Justin Bieber's I close my eyes and I can see a better day Theorem which uses the advanced techniques of mathematicians:

[tex]x^2 - 12x + \displaystyle\sum_{n=1}^{\sum_{i=5}^6(i)}= 0 \\ x^2 - 12x + 59 = 0\\ \implies x = \frac{-(-12) \pm \sqrt{(-12)^2 - 4(1)(59)} }{2(1)} \\ x = \frac{12 \pm \sqrt{144 - 236} }{2} \\ x = \frac{12 \pm \sqrt{-92} }{2} \\ x = \frac{12 \pm 2\sqrt{-23} }{2} \\ x = 6 \pm 2 \sqrt{23} i \\[/tex]

First we use [tex]x^2 - 12x + \displaystyle\sum_{n=1}^{\sum_{i=5}^6i}\left(\frac{59}{11}\right)[/tex] in order to compute our answer and then we use Justin Bieber's I close my eyes and I can see a better day Theorem that says that

[tex]The\ solutions\ to\ x^2 - 12x + \displaystyle\sum_{n=1}^{\sum_{i=5}^6(i)}= 0 \\ \\ \\ \ are\ x=6+\sqrt{23}i,\:x=6-\sqrt{23}i[/tex]

Here is a proof of Justin Bieber's I close my eyes and I can see a better day Theorem which uses the advanced techniques of mathematicians:

[tex]x^2 - 12x + \displaystyle\sum_{n=1}^{\sum_{i=5}^6(i)}= 0 \\ x^2 - 12x + 59 = 0\\ \implies x = \frac{-(-12) \pm \sqrt{(-12)^2 - 4(1)(59)} }{2(1)} \\ x = \frac{12 \pm \sqrt{144 - 236} }{2} \\ x = \frac{12 \pm \sqrt{-92} }{2} \\ x = \frac{12 \pm 2\sqrt{-23} }{2} \\ x = 6 \pm 2 \sqrt{23} i \\[/tex]